Building an optimizing compiler
for Dart

(with historical excursion into V8)

Vyacheslav Egorov

http: / /s3.mrale.ph/StrangeLoop2013.pdf

V8 Suite

Score

V8

2008

V8 Suite

Score

V8

- o - -

\

1008 2,010 20
Crankshaft

- o - -

1008 2.010 20
Crankshaft

Optimizing compilation is
the art of taking shortcuts

e Representation

e Resolution

o Redundancy

where is ﬂnis.?l

OQQ ® DR OP

)\w\ncﬁ s This?

Mmemorize relation between
what and where

OQQ i DR OP

lation between
what and where

MemorizZe re

)

&)

@ hidden classes & transitions reveal

\errudure N object’s dynamic history

oojects consfructed in the same way
should have the same hidden class

CA G
\ {lengfhi + doublel]

{const {,
const g

{const {,
const g

oy

X: doUble,
y: double

very powerful
and
very c_omp\ex

(affects everything: GC, compiler, runtime, built-ins)

very powerful
and
very comp\ex

(affects everything: GC, compiler, runtime, built-ins)

Fortunately Dart has
static class declarations

In Dart VM

0%3 ® DR OP

In Dart VM

Class of the receiver

In Vs

In Vs

Ih VS (AMerican Version)

ORJ g PRO?

In Vs

In Vs

In Vs

call 0xIa34s

OB D o PROP

cmp Leax-1], 0Xabce
jne RUNTIMt
moV eaX, Leax+7]
ret

In Vg
If all you have is an IC then

everything looks like an IC-stub

OB > DR OP

In V8 inline caches designed
to provide peak performance

locally
VS

In Dart VM they simply collect
type feedback, performance
Improvements are secondary

In V8 inline caches designed
to provide peak performance

locally
VS

In Dart VM they simply collect
type feedback, performance
Improvements are secondary

Ssource
2. comp||

need to be in jﬁnc @

;ﬁ
q}*&’rgpe oracle pattern matches
/

oerlmIZaJrlons

stub code to extract types

true polymorphic ICs
simple to mine for data

single backend EE
Dart VM

(from this point on we will mostly be talking about Dart VM)

- inlining - constant propagation
- Type inference

- range inference

- primitives unboXing

- common subeXpression elimination

- loop invariant code mMotion

- load forwarding

- allocation sinking

- block reordering

- branch folding

Most optimization passes are dominator free based

CheckClass x, A
y < Loadfield x, Ap

Sa oUILIOp

InstanceCall X, “get:q"

CheckClass x, A
Y < LoadField X, Ap

types can be propagated

S3 L OUILUOP

from checks downwards

X 1s A

(and can't change))

@

InstanceCall X, "geT:q"

CheckClass x, A
Y < LoadField X, Ap

types can be propagated
from checks downwards

3
:

(and can't change))

@ 7 «- LOGdFIE’,ld X, P1C|

- remoVve redundant checks

- avoid (re)optimizing non-executed
code i we have enough type
INformation

- reduce polymorphism after
nlining of generic functions

- constant fold is (instance-of) checks
[checked mode inserts assert(v is T)]

y < Loadfield x, Af

compiler knows where

this field is \

y < Loadfield x, Af

compiler knows where

this field is \

y < Loadfield x, Af

\compi\er (usually) does not know
what the field contains

Lbecause Dart type annotations are just comments in production mode]

y <~ Loadfield x, Af {C)
AN

globally track possible type of each field

and assume type when loading Vvalue

Guardfield Af 3, z
Storefield x, Af, z

y <~ Loadfield x, Af {C)

guard assumed type of field on each store
[deoptimize code depending on invalidated
assuMptions. &

Guardfield Af 3, z
Storefield x, Af, z

primitives UunboXing T-_J%L)

(O
X

4143

¢/
boX

simple for double and simd:
- just look at the type

not so simple for int:
- requires range profiing for op's
results
-> currently VM does not unbox int

primitives unboXing

works well enough because
- double and int different Types
- mosT InTeresting iNTs fit into
tagged smi encoding
+ compiler has some support for
unboXed b4bit ints

primitives unboXing

compare o V&

JavaScript has only double

.. but bitwise ops coerce into int3a,
uinT3a range

- arithmetic ops collect range
feedoack: smi, int32, double

- compiler fries To guess best
representation

load forwarding

c <- X§

a <- Xt

load forwarding

allocates termporary iterator

\

for (var item in list) {
// use item

var it = new Iterator(list)
while (it moveNext(0) {

Var rem = t.current;
3

var it = alloc(Iterator),

tlist = list:

Tidx = -

while (++itidx < itlisTlength)
var item = itlistlitidx],

)

var it = alloc(Iterator),
Tlist = list,
Tidx = &idx = -I
while ((iTidx = ++#&idx) <
ist length) f
var item - listl#ridx],
)

XidX = -

while (++%idx < listlength)
var item - listL&idxJ

)

ost step was allocation sinking

idX - -|

while (++%idx < listlength) {
var item = listl#ridx],

.. allocation was sunk info deopt side exits

XidX = -

while (++#idx < listlength) §
var item - listl#&idx].

)

but I simplified things a lot, in reality
Mmany optimizations have to work together

bool moveNextO { f possible check wil be folded away

int length - _iterable length. ’
i (length 1= length) {

throw new ConcurrentModificationtrror(_iterable).
)

f (index >- length) ¢
_current - nU“;
r‘eJrur‘h 'FO‘Se;

)

current - _iterable elementAt_index).
_ihdex T,

return true.

similar example

ist fortach((item) {

// Use item
}),

load forwarding + allocation sinking are
crucial o reduce the cost of abstractions

the frap of inlining

almost impossible o predict
whether it is beneficial to
iNline until you try

the frap of inlining

almost impossible o predict
whether it is beneficial to
iNline until you try

Trying costs

the frap of inlining

almost impossible o predict
whether it is beneficial To
iNline until you try

thus have to be conservative

the frap of inlining

on the other hand inlining
eXposes redundancy
that could be eliminated

the frap of inlining

“‘solution®: force inlining of
important methods in
core lbrary

[does not help user code, if normal inlining heuristics do Not “hit* it]

